หน่วยที่ 1 ปริมาณทางฟิสิกส์และแรง
ปริมาณทางฟิสิกส์
ปริมาณกายภาพแบ่งออกได้ 2 ประเภท
1. ปริมาณสเกล่าร์ คือปริมาณที่บอกแต่ขนาดอย่างเดียวก็ได้ความหมายสมบูรณ์ ไม่ต้องบอกทิศทาง เช่น ระยะทาง มวล เวลา ปริมาตร ความหนาแน่น งาน พลังงาน ฯลฯ การหาผลลัพธ์ของปริมาณสเกล่าร์ ก็อาศัยหลังการทางพีชคณิต คือ วิธีการ บวก ลบ คูณ หาร
2. ปริมาณเวกเตอร์ คือ ปริมาณที่ต้องบอกทั้งขนาดและทิศทาง จึงจะได้ความหมายสมบูรณ์ เช่น การกระจัด ความเร่ง ความเร็ว แรง โมเมนตัม ฯลฯ การหาผลลัพธ์ของปริมาณเวกเตอร์ ต้องอาศัยวิธีการทางเวคเตอร์ โดยต้องหาผลลัพธ์ทั้งขนาดและทิศทาง
ปริมาณเวกเตอร์
1. สัญลักษณ์ของปริมาณเวกเตอร์
ใช้อักษรมีลูกศรครึ่งบนชี้จากซ้ายไปขวา หรือใช้ตัวอักษรทึบแสดงปริมาณเวกเตอร์ก็ได้
2. เวกเตอร์ที่เท่ากัน
เวกเตอร์ 2 เวกเตอร์เท่ากัน เมื่อเวกเตอร์ทั้งสองเท่ากันและมีทิศไปทางเดียวกัน
3. นิเสธเวกเตอร์
นิเสธของเวกเตอร์ คือ เวกเตอร์ที่มีขาดเท่ากันแต่ทิศทางตรงกันข้าม
ให้ u เป็นเวกเตอร์ใดๆ เขียนแทนนิเสธของ u ด้วย - u
4. เวกเตอร์ศูนย์
เวกเตอร์ศูนย์ คือ เวกเตอร์ที่มีจุดเริ่มต้นและจุดสิ้นสุดเป็นจุดเดียวกัน
ดังนั้น เวกเตอร์ศูนย์คือจุดนั่นเอง เนื่องจากไม่มีความยาว และมีขนาดเท่ากับศูนย์
5. เวกเตอร์ลัพธ์ใช้อักษร R
6. การบวก-ลบเวกเตอร์
การบวก-ลบเวกเตอร์ หรือการหาเวกเตอร์ สามารถทำได้ 2 วิธี คือ
1. วิธีการเขียนรูป
2. วิธีการคำนวณ
1.1 การหาเวกเตอร์ลัพธ์โดยวิธีการเขียนรูปแบบหางต่อหัว มีขั้นตอนดังนี้
(1) เขียนลูกศรตามเวกเตอร์แรกตามขนาดและทิศทางที่กำหนด
(2) นำหางลูกศรของเวกเตอร์ที่ 2 ที่โจทย์กำหนด ต่อหัวลูกศรของเวกเตอร์แรก
(3) นำหางลูกศรของเวกเตอร์ที่ 3 ที่โจทย์กำหนด ต่อหัวลูกศรของเวกเตอร์ที่ 2
(4) ถ้ามีเวกเตอร์ย่อยๆอีก ให้นำเวกเตอร์ต่อๆไป มากระทำดังข้อ (3) จนครบทุกเวกเตอร์
(5) เวกเตอร์ลัพธ์หาได้โดยการลากลูกศรจากหางของเวกเตอร์แรกไปยังหัวของเวกเตอร์สุดท้าย เช่น
นิยามต้องทราบ
ถ้า A เป็นเวกเตอร์ใดๆที่มีขนาดและทิศทางหนึ่งๆ เวกเตอร์ -A คือ เวกเตอร์ที่มีขนาดเท่ากับเวกเตอร์ A แต่ มี ทิศทางตรงกันข้าม
1.2 การหาเวกเตอร์ลัพธ์โดยวิธีการคำนวณ
เนื่องจากการหาเวกเตอร์ลัพธ์โดยวิธีการวาดรูป ให้ผลลัพธ์ไม่แม่นยำเพียงแต่ได้คร่าวๆ เท่านั้น เพราะถ้าลากความยาวหรือทิศทางลูกศรแทนเวกเตอร์คลาดเคลื่อนเพียงเล็กน้อย ผลของเวกเตอร์ลัพธ์ก็จะคลาดเคลื่อนไปด้วยแต่การหาเวกเตอร์ลัพธ์โดยการคำนวณจะให้ผลลัพธ์ถูกต้องแน่นอน การหาเวกเตอร์ลัพธ์โดยวิธีการคำนวณ เมื่อมีเวกเตอร์ย่อยเพียง 2 เวกเตอร์ จะแบ่งออกเป็น 3 ลักษณะ ดังนี้
1. เวกเตอร์ทั้ง 2 ไปทางเดียวกัน เวกเตอร์ลัพธ์มีขนาดเท่ากับผลบวกของขนาดเวกเตอร์ทั้งสอง ทิศทางของเวกเตอร์ไปทางเดียวกับเวกเตอร์ทั้งสอง
2. เวกเตอร์ทั้ง 2 สวนทางกัน เวกเตอร์ลัพธ์มีขนาดเท่ากับผลต่างของเวกเตอร์ทั้งสอง ทิศทางของเวกเตอร์ลัพธ์ไปทางเดียวกับเวกเตอร์ที่มีขนาดมากกว่า เพราะฉะนั้น R = B - A เมื่อ B > A , R = A - B เมื่อ A > B
3. เวกเตอร์ทั้ง 2 ทำมุม 0 ต่อกัน สามารถหาเวกเตอร์ลัพธ์โดยวิธีการเขียนรูปสี่เหลี่ยมด้านขนาน โดยให้เวกเตอร์ย่อยเป็นด้านของสี่เหลี่ยมด้านขนานที่ประกอบ ณ จุดนั้น จะ ได้เวกเตอร์ลัพธ์มีขนาดและทิศทางตามแนวเส้นทแยงมุมของสี่เหลี่ยมด้านขนานที่ลากจากจุดที่เวกเตอร์ทั้งสองกระทำต่อกัน
ระยะทาง (Distance) คือ ความยาววัดตามแนวเส้นที่อนุภาคเคลื่อนที่ เป็นปริมาณสเกล่าร์(มีเฉพาะขนาด)หน่วยมาตรฐาน SI คือ "เมตร"
การขจัด หรือ การกระจัด (Displacement) คือ เส้นตรงที่ลากจากจุดตั้งต้นของการเคลื่อนที่ไปยังจุดสุดท้ายของการเคลื่อนที่ เป็นปริมาณเวกเตอร์ มีทั้งขนาดและทิศทาง (คือ ทิศจากที่หัวศรลากจากจุดตั้งต้นไปสุดท้าย)มีหน่วย "เมตร" เช่นกัน
ปริมาณกายภาพแบ่งออกได้ 2 ประเภท
1. ปริมาณสเกล่าร์ คือปริมาณที่บอกแต่ขนาดอย่างเดียวก็ได้ความหมายสมบูรณ์ ไม่ต้องบอกทิศทาง เช่น ระยะทาง มวล เวลา ปริมาตร ความหนาแน่น งาน พลังงาน ฯลฯ การหาผลลัพธ์ของปริมาณสเกล่าร์ ก็อาศัยหลังการทางพีชคณิต คือ วิธีการ บวก ลบ คูณ หาร
2. ปริมาณเวกเตอร์ คือ ปริมาณที่ต้องบอกทั้งขนาดและทิศทาง จึงจะได้ความหมายสมบูรณ์ เช่น การกระจัด ความเร่ง ความเร็ว แรง โมเมนตัม ฯลฯ การหาผลลัพธ์ของปริมาณเวกเตอร์ ต้องอาศัยวิธีการทางเวคเตอร์ โดยต้องหาผลลัพธ์ทั้งขนาดและทิศทาง
ปริมาณเวกเตอร์
1. สัญลักษณ์ของปริมาณเวกเตอร์
ใช้อักษรมีลูกศรครึ่งบนชี้จากซ้ายไปขวา หรือใช้ตัวอักษรทึบแสดงปริมาณเวกเตอร์ก็ได้
2. เวกเตอร์ที่เท่ากัน
เวกเตอร์ 2 เวกเตอร์เท่ากัน เมื่อเวกเตอร์ทั้งสองเท่ากันและมีทิศไปทางเดียวกัน
3. นิเสธเวกเตอร์
นิเสธของเวกเตอร์ คือ เวกเตอร์ที่มีขาดเท่ากันแต่ทิศทางตรงกันข้าม
ให้ u เป็นเวกเตอร์ใดๆ เขียนแทนนิเสธของ u ด้วย - u
4. เวกเตอร์ศูนย์
เวกเตอร์ศูนย์ คือ เวกเตอร์ที่มีจุดเริ่มต้นและจุดสิ้นสุดเป็นจุดเดียวกัน
ดังนั้น เวกเตอร์ศูนย์คือจุดนั่นเอง เนื่องจากไม่มีความยาว และมีขนาดเท่ากับศูนย์
5. เวกเตอร์ลัพธ์ใช้อักษร R
6. การบวก-ลบเวกเตอร์
การบวก-ลบเวกเตอร์ หรือการหาเวกเตอร์ สามารถทำได้ 2 วิธี คือ
1. วิธีการเขียนรูป
2. วิธีการคำนวณ
1.1 การหาเวกเตอร์ลัพธ์โดยวิธีการเขียนรูปแบบหางต่อหัว มีขั้นตอนดังนี้
(1) เขียนลูกศรตามเวกเตอร์แรกตามขนาดและทิศทางที่กำหนด
(2) นำหางลูกศรของเวกเตอร์ที่ 2 ที่โจทย์กำหนด ต่อหัวลูกศรของเวกเตอร์แรก
(3) นำหางลูกศรของเวกเตอร์ที่ 3 ที่โจทย์กำหนด ต่อหัวลูกศรของเวกเตอร์ที่ 2
(4) ถ้ามีเวกเตอร์ย่อยๆอีก ให้นำเวกเตอร์ต่อๆไป มากระทำดังข้อ (3) จนครบทุกเวกเตอร์
(5) เวกเตอร์ลัพธ์หาได้โดยการลากลูกศรจากหางของเวกเตอร์แรกไปยังหัวของเวกเตอร์สุดท้าย เช่น
นิยามต้องทราบ
ถ้า A เป็นเวกเตอร์ใดๆที่มีขนาดและทิศทางหนึ่งๆ เวกเตอร์ -A คือ เวกเตอร์ที่มีขนาดเท่ากับเวกเตอร์ A แต่ มี ทิศทางตรงกันข้าม
1.2 การหาเวกเตอร์ลัพธ์โดยวิธีการคำนวณ
เนื่องจากการหาเวกเตอร์ลัพธ์โดยวิธีการวาดรูป ให้ผลลัพธ์ไม่แม่นยำเพียงแต่ได้คร่าวๆ เท่านั้น เพราะถ้าลากความยาวหรือทิศทางลูกศรแทนเวกเตอร์คลาดเคลื่อนเพียงเล็กน้อย ผลของเวกเตอร์ลัพธ์ก็จะคลาดเคลื่อนไปด้วยแต่การหาเวกเตอร์ลัพธ์โดยการคำนวณจะให้ผลลัพธ์ถูกต้องแน่นอน การหาเวกเตอร์ลัพธ์โดยวิธีการคำนวณ เมื่อมีเวกเตอร์ย่อยเพียง 2 เวกเตอร์ จะแบ่งออกเป็น 3 ลักษณะ ดังนี้
1. เวกเตอร์ทั้ง 2 ไปทางเดียวกัน เวกเตอร์ลัพธ์มีขนาดเท่ากับผลบวกของขนาดเวกเตอร์ทั้งสอง ทิศทางของเวกเตอร์ไปทางเดียวกับเวกเตอร์ทั้งสอง
2. เวกเตอร์ทั้ง 2 สวนทางกัน เวกเตอร์ลัพธ์มีขนาดเท่ากับผลต่างของเวกเตอร์ทั้งสอง ทิศทางของเวกเตอร์ลัพธ์ไปทางเดียวกับเวกเตอร์ที่มีขนาดมากกว่า เพราะฉะนั้น R = B - A เมื่อ B > A , R = A - B เมื่อ A > B
3. เวกเตอร์ทั้ง 2 ทำมุม 0 ต่อกัน สามารถหาเวกเตอร์ลัพธ์โดยวิธีการเขียนรูปสี่เหลี่ยมด้านขนาน โดยให้เวกเตอร์ย่อยเป็นด้านของสี่เหลี่ยมด้านขนานที่ประกอบ ณ จุดนั้น จะ ได้เวกเตอร์ลัพธ์มีขนาดและทิศทางตามแนวเส้นทแยงมุมของสี่เหลี่ยมด้านขนานที่ลากจากจุดที่เวกเตอร์ทั้งสองกระทำต่อกัน
ระยะทาง (Distance) คือ ความยาววัดตามแนวเส้นที่อนุภาคเคลื่อนที่ เป็นปริมาณสเกล่าร์(มีเฉพาะขนาด)หน่วยมาตรฐาน SI คือ "เมตร"
การขจัด หรือ การกระจัด (Displacement) คือ เส้นตรงที่ลากจากจุดตั้งต้นของการเคลื่อนที่ไปยังจุดสุดท้ายของการเคลื่อนที่ เป็นปริมาณเวกเตอร์ มีทั้งขนาดและทิศทาง (คือ ทิศจากที่หัวศรลากจากจุดตั้งต้นไปสุดท้าย)มีหน่วย "เมตร" เช่นกัน